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The paper investigates the influence of stiffness and damping on the oscillations of a spring-damper 

system under a given load (sprung mass). The stiffness determines the mass of the sprung part of a vehicle 

structure. The use of a damper in a typical configuration between the sprung and unsprung masses may, in 

some cases, help to attenuate vibrations, while in others, it may amplify them. 

The aim of the experimental study is to empirically substantiate the rational parameters of the spring-

damper system under a non-harmonic excitation of the oscillatory system by a force impulse of a given amplitude. 

A laboratory test rig and the results of a factorial planned experiment are presented. A second-order 

regression equation in natural parameters was obtained. The regression model was analyzed with two factors – the 

sprung mass and the damping coefficient – while the stiffness coefficient was kept constant at three levels. For a 

stiffness coefficient of 3088 H/m and an excitation force impulse of 500 H applied to mass m2, the oscillation amplitude 

of the sprung mass of 100 kg with a damping coefficient of 300 H·s/m is 48 mm, and with a damping coefficient of 

200 H·s/m – 47 mm. For a sprung mass of 50 kg and damping coefficient of 300 H·s/m, the oscillation amplitude of 

mass m2 is 88.9 mm, and with a damping coefficient of 200 H·s/m – 76.9 mm. Similarly, for a stiffness coefficient of 

2745 H/m and excitation force impulse of 500 H, the oscillation amplitude of the sprung mass of 100 kg with a damping 

coefficient of 300 H·s/m is 55 mm, and with 200 H·s/m – 47 mm. For a sprung mass of 50 kg and damping coefficient 

of 300 H·s/m, the oscillation amplitude of mass m2 is 108 mm, and with 200 H·s/m – 85.9 mm. 

With a decrease in the sprung mass, the oscillation amplitude increases. A decrease in the stiffness 

coefficient of the spring-damper system also results in an increase in the oscillatory impulse amplitude of the 

sprung mass. A reduction in the damping coefficient of the spring-damper system leads to a decrease in the 

oscillatory impulse amplitude of the sprung mass. This enables adaptive control of the sprung mass oscillations 

while maintaining the condition of a damped oscillatory response of the spring-damper system. 

Key words: oscillation amplitude, stiffness coefficient, damper, sprung mass, factorial experiment, 

design matrix, factor, regression equation. 

Eq. 8. Fig. 3. Table. 3. Ref. 10. 

 

1. Problem formulation 

The study of elastic–damper systems is currently in high demand in the context of vehicle development. 

The suspension systems of vehicles, regardless of the type of transport system or suspension design, contain both 

elastic and damping elements. Elasticity determines the mass of the sprung part of the vehicle structure. The use 

of a damper in the typical configuration between the sprung and unsprung masses helps to attenuate oscillations 

in some cases, while in others it may induce them. 

The necessity to alter the operating mode of the elastic–damper system under different conditions 

requires an adaptive system, which leads to the development of active or semi-active systems–those that control 

either elasticity or damping, or a combination of both elasticity and damping. 

This, in turn, necessitates experimental studies of the parameters of the elastic–damper system. 

 

2. Analysis of recent research and publications 

Cylindrical helical compression springs are widely used in elastic–damper systems and in mechanical 

systems as energy storage components. Among their wide range of applications, those that require knowledge 

of the transverse stiffness of the spring pose significant challenges. Examples of such applications include 

vibratory conveyors, railway bogies, and vibration dampers. 

http://tetapk.vsau.org/en/particles/experimental-study-of-the-amplitude-of-oscillations-elastic-damper-system-kelvin-voigt-body
http://tetapk.vsau.org/en/particles/experimental-study-of-the-amplitude-of-oscillations-elastic-damper-system-kelvin-voigt-body
http://tetapk.vsau.org/en/particles/experimental-study-of-the-amplitude-of-oscillations-elastic-damper-system-kelvin-voigt-body
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Analytical models are generally based on simplifications and may therefore be prone to errors. Differences 

have been observed between experimental results and those obtained using elementary relations for the static 

characteristics of cylindrical helical compression springs [1]. Moreover, the stiffness relationships for springs 

available in the literature are sufficiently accurate only for springs with at least five active coils [2]. The cited work 

presents the results of experimental studies on the axial compression of springs with two different end types (closed 

and ground ends, and closed but unground ends). The influence of the end coils on the natural frequencies of 

longitudinal vibrations was analyzed [3]. A modification of the traditional analytical model was proposed, in which 

the fixed boundary points at the ends of the active coils were replaced by torsional stiffness elements representing 

the end coils. Including the end coils in the calculations produced results closer to experimental data than those 

obtained from the traditional model [3]. The problem of transverse vibrations of cylindrical helical compression 

springs, which has significant practical importance, has been addressed in many studies.  

Researchers have investigated the use of a damper and a spring for in-wheel motor suspension and the 

development of a dynamic vibration absorber system that can simultaneously improve ride comfort and reduce 

in-wheel motor vibration compared to a conventional suspension system [4, 5]. Xu et al. studied the damping 

properties of viscoelastic dampers made of different viscoelastic materials [6, 7]. Sato et al. [8] proposed a 

method for evaluating the practical application of viscoelastic dampers in wind vibration control by using 

equivalent sinusoidal waveforms to simulate long-duration random excitations in the along-wind and cross-

wind directions. Lu et al. [9] investigated the constitutive relationship of viscoelastic materials, taking into 

account the friction effect of individual molecular chains with the surrounding environment at the microscale. 

The dynamic characteristics and energy dissipation behavior of viscoelastic dampers exhibit nonlinear 

dependence on both the frequency and the amplitude of displacement loading. 

 

3. The purpose of the article 

The purpose of the experimental study is to empirically substantiate the rational parameters of the 

elastic–damper system under non-harmonic excitation of the oscillatory system by an impulse of force with a 

given amplitude and duration. 

 

4. Results and discussion 

The parallel connection of an elastic element and a damping element represents the classical 

configuration of a Kelvin–Voigt body. The structural diagram of the test stand is shown in Figure 1, and its 

general view is presented in Figure 2. 

The elastic elements (1) (Figures 1 and 2) are connected in parallel with a pneumatic damper (2). The 

pneumatic damper is connected to a subsystem (3) that measures pressure and includes a bypass throttle with a 

variable orifice. The information from subsystem (3) is transmitted to the damping control and monitoring system 

(DCMS), then to an analog-to-digital converter (ADC), from which data are read by a personal computer (PC). 

Information about the oscillations of the sprung mass m₁ (6) and the unsprung mass m₂ (5) is captured 

by sensors (4), converted by the ADC, and then read by the computer. Control of the DCMS (see Figure 2, 

item 3, assembly) is carried out from the computer via a digital-to-analog converter (DAC). All measurement 

and processing operations are performed by the computer. 

 
Fig. 1. Structural diagram of the test stand for investigating the elastic–damper system 
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Fig. 2. General view of the test stand for investigating the elastic–damper system 

 

The input factors include the sprung mass (m₁), the stiffness coefficient (Kₚᵣ), and the damping 

coefficient (Kdamp). The response criteria are the oscillation amplitude of the sprung mass (Am1) and the 

amplitude time constant (tₚᵤₗₛ) of the sprung mass oscillation. The factor variation levels are given in Table 1. 

The study was conducted as a factorial designed experiment. The experimental methodology was based on the 

approach described in [10], taking into account the significance of each factor and decoding the regression 

model terms into coefficients corresponding to the natural values of the factors. 

Table 1 

Levels of variation of factors and their code values in the planned experiment 

Factors 

D
es

ig
n
at

io
n
 

D
im

en
si

o
n
 

Levels of factors 

Variation 

interval 

upper null lower 

Code values 

+ 1 0 - 1 

Sprung mass, m1 х1 kg 100 75 50 25 

Elasticity coefficient, Kpr х2 H/m 3088 2475 2402 343 

Damping coefficient, Kdamp   х3 H·s/m 300 250 200 50 

 

To investigate the influence of these factors, the experiment was carried out in three repetitions 

according to the experimental matrix (Table 2) and the previously described methodology [10]. 

In order for the design matrix to possess the property of orthogonality, a column with corrected level 

values х/ was introduced in Table 2, which is calculated using the following formula:  
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The matrix of calculated coefficients of the regression equation is presented in Table 2, where columns 

2–11 constitute the orthogonal design matrix, column 12 – contain the experimental response values. 

Based on the data from Table 2, the regression equation coefficients were calculated. The values of 

the regression coefficients characterize the contribution of each factor to the response function and were 

determined using the following formulas [10]: 
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The results of the coefficient calculations for the regression equation are presented in Table 3. 
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Table 2 

Orthogonal Three-Factor Second-Order Design Matrix 

№ х1 х2 х3 х1·х2 х1·х3 х2·х3    х1·х2·х3 y1 (Am1), m 

1 2 3 4 5 6 7 8 9 10 11 12 

1 +1 +1 +1 +1 +1 +1 0.3333 0.3333 0.3333 +1 0.0481 

2 0 +1 +1 0 0 +1 -0.6667 0.3333 0.3333 0 0.06268 

3 -1 +1 +1 -1 -1 +1 0.3333 0.3333 0.3333 -1 0.08895 

4 +1 +1 -1 +1 -1 -1 0.3333 0.3333 0.3333 -1 0.0424 

5 0 +1 -1 0 0 -1 -0.6667 0.3333 0.3333 0 0.0547 

6 -1 +1 -1 -1 +1 -1 0.3333 0.3333 0.3333 +1 0.07688 

7 +1 +1 0 +1 0 0 0.3333 0.3333 -0.6667 0 0.0429 

8 0 +1 0 0 0 0 -0.6667 0.3333 -0.6667 0 0.05555 

9 -1 +1 0 -1 0 0 0.3333 0.3333 -0.6667 0 0.07876 

10 +1 -1 +1 -1 +1 -1 0.3333 0.3333 0.3333 -1 0.07338 

11 0 -1 +1 0 0 -1 -0.6667 0.3333 0.3333 0 0.0962 

12 -1 -1 +1 +1 -1 -1 0.3333 0.3333 0.3333 +1 0.13978 

13 +1 -1 -1 -1 -1 +1 0.3333 0.3333 0.3333 +1 0.054 

14 0 -1 -1 0 0 +1 -0.6667 0.3333 0.3333 0 0.06981 

15 -1 -1 -1 +1 +1 +1 0.3333 0.3333 0.3333 -1 0.09865 

16 +1 -1 0 -1 0 0 0.3333 0.3333 -0.6667 0 0.0588 

17 0 -1 0 0 0 0 -0.6667 0.3333 -0.6667 0 0.07636 

18 -1 -1 0 +1 0 0 0.3333 0.3333 -0.6667 0 0.1091 

19 +1 0 +1 0 +1 0 0.3333 -0.6667 0.3333 0 0.0558 

20 0 0 +1 0 0 0 -0.6667 -0.6667 0.3333 0 0.07567 

21 -1 0 +1 0 -1 0 0.3333 -0.6667 0.3333 0 0.1088 

22 +1 0 -1 0 -1 0 0.3333 -0.6667 0.3333 0 0.0473 

23 0 0 -1 0 0 0 -0.6667 -0.6667 0.3333 0 0.0611 

24 -1 0 -1 0 +1 0 0.3333 -0.6667 0.3333 0 0.08594 

25 +1 0 0 0 0 0 0.3333 -0.6667 -0.6667 0 0.049 

26 0 0 0 0 0 0 -0.6667 -0.6667 -0.6667 0 0.064 

27 -1 0 0 0 0 0 0.3333 -0.6667 -0.6667 0 0.091 

∑ 18 18 18 12 12 12  - -   - 8 - 

 

To express the regression equation in natural factor values, the linear terms were transformed from 

coded values into natural values according to the formula [10]: 
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where iX – natural value of the factor, 0iX – natural value of the factor at the zero level,  – variation 

interval. 

The transformation of interaction linear terms was carried out according to the formula [10]: 
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The transformation of quadratic terms was performed using the formula [10]: 
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Analysis shows that the regression model with three factors would be inadequate. Therefore, the 

regression model is considered with two factors – the sprung mass and the damping coefficient – while the 

stiffness coefficient factor remains constant. Thus, for three values of the stiffness coefficient, we obtain three 

regression models.  

The results of calculating the natural coefficients of the regression equation are given in Table 3.  
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Table 3 

Results of the calculation of the regression equation coefficients at given levels of factor x2 

Coefficient of 

the regression 

equation 

x2 = +1 x2 = 0 x2 = -1 

Coded 

coefficient 

Real 

coefficient 

Coded 

coefficient 

Real 

coefficient 

Coded 

coefficient 

Real 

coefficient 

b0 0.0555 0.1941 0.064 0.2033 0.076 0.257 

b1 -0.0185 -0.001716 -0.0223 -0.001636 -0.0269 -0.001964 

b2 0.0043 -0.000458 0.0077 -0.00051 0.0145 -0.000826 

b12 -0.0016 -1.28·10-6 -0.0036 2.88·10-6 -0.0054 -4.32·10-6 

b11 0.0054 8.64·10-6 0.0061 9.76·10-6 0.0082 13.12·10-6 

b22 0.0032 1.28·10-6 0.0044 1.76·10-6 0.0072 2.88·10-6 

 

The regression equations in natural parameters for the vibration of the sprung mass are as follows: 

 𝐴𝑚1(𝑥2=+1) = 0.1941 − 0.001716 ∙ 𝑚1 − 0.000458 ∙ 𝐾𝑑𝑎𝑚𝑝 +  

 +8.64 ∙ 10−6 ∙ 𝑚1
2 + 1.28 ∙ 10−6 ∙ 𝐾𝑑𝑎𝑚𝑝

2 − 1.28 ∙ 10−6 ∙ 𝑚1 ∙ 𝐾𝑑𝑎𝑚𝑝 (6) 

 𝐴𝑚1(𝑥2=0) = 0.2033 − 0.001636 ∙ 𝑚1 − 0.00051 ∙ 𝐾𝑑𝑎𝑚𝑝 +  

 +9.76 ∙ 10−6 ∙ 𝑚1
2 + 1.76 ∙ 10−6 ∙ 𝐾𝑑𝑎𝑚𝑝

2 + 1.76 ∙ 10−6 ∙ 𝑚1 ∙ 𝐾𝑑𝑎𝑚𝑝 (7) 

  
a b 

 
c 

Fig. 3. 3D graphical models of the vibration amplitude of the spring-damper system as a function of the 

sprung mass m1 and the damping coefficient Kdamp at a given stiffness coefficient Kpr (H/m):  

a) 3088; b) 2475; c) 2402 
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 𝐴𝑚1(𝑥2=−1) = 0,257 − 0.001964 ∙ 𝑚1 − 0.000826 ∙ 𝐾𝑑𝑎𝑚𝑝 +  

 +13.12 ∙ 10−6 ∙ 𝑚1
2 + 2.88 ∙ 10−6 ∙ 𝐾𝑑𝑒𝑚𝑝

2 − 4.32 ∙ 10−6 ∙ 𝑚1 ∙ 𝐾𝑑𝑎𝑚𝑝 (8) 

For a stiffness coefficient Kpr = 3088 H/m and an excitation impulse force F(t) = 500 H applied to 

mass m2 (Fig. 1), the amplitude of a single oscillation of the sprung mass m1 = 100 kg is 48 mm at a damping 

coefficient Kdamp = 300 H·s/m and 47 mm at Kdamp = 200 H·s/m. With a decrease of the sprung mass, the 

oscillation amplitude increases (Eq. (6), Fig. 3a). For a sprung mass of 50 kg and Kdamp = 300 H·s/m, the 

amplitude of a single oscillation of mass m2 is 88.9 mm, while for Kdamp = 200 H·s/m it is 76.9 mm. A decrease 

in the damping coefficient results in a reduction of the oscillation amplitude (Fig. 3a). 

For a stiffness coefficient Kpr = 2745 H/m and the excitation impulse F(t) = 500 H applied to mass m2 

(Fig. 1), the amplitude of a single oscillation of the sprung mass m1 = 100 kg is 55 mm at Kdamp = 300 H·s/m 

and 47 mm at Kdamp = 200 H·s/m (Eq. (7), Fig. 3b). For a sprung mass of 50 kg and Kdamp = 300 H·s/m, the 

amplitude of a single oscillation of mass m2 is 108 mm, while for Kdamp = 200 H·s/m it is 85.9 mm. A decrease 

in the damping coefficient leads to a reduction of the oscillation amplitude (Fig. 3b). 

A similar trend of change in the amplitude of the oscillatory impulse is observed for the sprung mass 

m1 = 75 kg. For Kpr = 2402 H/m, the trend of amplitude variation over the considered range of sprung masses 

is analogous (Eq. (8), Fig. 3c). 

 

5. Conclusion 

The analysis of the experimental data shows that with a decrease in the sprung mass (load mass), the 

amplitude of the oscillatory impulse of the sprung mass increases. A decrease in the stiffness coefficient of the 

spring-damper system also results in an increase in the oscillatory impulse amplitude of the sprung mass. 

A reduction in the damping coefficient of the spring-damper system leads to a decrease in the 

oscillatory impulse amplitude of the sprung mass. This enables adaptive control of the sprung mass oscillations 

while maintaining the condition of a damped oscillatory response of the spring-damper system. 
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ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ АМПЛІТУДИ КОЛИВАННЯ ПРУЖНО-

ДЕМПФЕРНОЇ СИСТЕМИ  (ТІЛО КЕЛЬВІНА-ФОЙГТА) 

В роботі розглянуто вплив пружності і демпфування на коливання пружно-демпферної 

системи за заданого навантаження (підпружиненої маси). Пружність регламентує масу 

підпружиненої частини конструкції транспортного засобу. Використання демпфера в типовій 

конфігурації між підресореними та непідресореними масами в одних ситуаціях допомагає гасити 

коливання, а в інших – викликає їх.   

Метою експериментального дослідження є емпіричне обґрунтування раціональних параметрів 

пружно-демпферної системи за негармонійного  впливу на коливну систему імпульсу сили заданої амплітуди. 

Приведено лабораторну установку та результати факторного планованого експерименту. 

Отримано рівняння регресії другого порядку в натуральних показниках. Регресійну модель розглядали за 

двома факторами, підружиненої маси і коефіцієнту демпфування, а фактор коефіцієнта пружності 

приймали незмінним на трьох рівнях. Для коефіцієнті пружності 3088 H/m і силі імпульсу збурення 

500 H, яка прикладається до маси m2, амплітуда коливання підпружинемої маси 100 kg за коефіцієнту 

демпфування 300 H·s/m становить 48 mm, а за коефіцієнту демпфування 200 H·s/m становить 47 mm. 

За підпружиненої маси 50 kg і коефіцієнті демпфування 300 H·s/m амплітуда коливання маси 

m2 становить 88,9 mm, а за коефіцієнту демпфування 200 H·s/m, амплітуда одного коливання маси 

m2 становить 76,9 mm. Аналогічно, за коефіцієнта пружності 2745 H/m і силі імпульсу збурення 500 H, 

амплітуда коливання підпружиненої маси 100 kg за коефіцієнту демпфування 300 H·s/m становить 

55 mm, а за коефіцієнту демпфування 200 H·s/m становить 47 mm. За підпружененої маси 50 kg і 

коефіцієнті демпфування 300 H·s/m амплітуда одного коливання маси m2 становить 108 mm, а за 

коефіцієнту демпфування 200 H·s/m, амплітуда одного коливання маси m2 становить 85,9 mm.  

Із зменшенням підпружиненої маси амплітуда коливання зростає. Із зменшенням коефіцієнту 

пружності пружно-демпферної системи амплітуда коливного імпульсу підпружиненої маси також 

зростає. Зменшення коефіцієнта демпфування пружно-демпферної системи веде до зменшення 

амплітуда коливного імпульсу підпружиненої маси. Це уможливлює адаптивне керування коливанням 

підпружиненої маси при забезпеченні умови затухаючого коливання пружно-демпферної системи. 

Ключові слова: амплітуда коливання, коефіцієнт пружності, демпфер, маса підпружинена, 

планований експеримент, матриця планування, фактор, рівняння регресії. 

Ф. 8. Рис. 3. Табл. 3. Літ. 10.  
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