Engineering, Energy, Transport AIC


Issue №: 1 (124)

Published: 2024.04.22
DOI: 10.37128/2520-6168-2024-1

The journal solves the problems of creation and improvement of machinery and technologies for agriculture: 131 - Applied Mechanics, 132 - Materials Science, 133 - Industrial Engineering, 141 - Power Engineering, Electrical Engineering and Electromechanics, 208 - Agricultural Engineering.

Read about journal


DOI: 10.37128/2520-6168-2024-1-2
PDF Повернутись

Kateryna VYNARCHUK – Ph.D. Postgraduate Student, Department of Construction Materials Technology and Materials Science National University of Life and Environmental Sciences of Ukraine (St. Heroyiv Oborony , 15, Kyiv, Ukraine, 03041, e-mail: vinarchuk-k@ukr.net, https://orcid.org/0000-0003-3964-5298).


The development of the nanoindustry over the past 15-20 years allows us to consider substances containing nanomaterials as an alternative to existing chemical means of control in the cultivation of agricultural crops, in particular as components of mineral nutrition and protection of field crops. Taking into account the relevance of this issue, in recent years, the use of colloidal forms of metals as elements of micronutrient plant nutrition has been made and substantiated by our own research. Nanotechnology provides sustainable solutions by replacing traditional fertilizers with nanoparticles. These nanoparticles have unique properties to overcome bioavailability issues and enhance mineral uptake, increase yields and reduce fertilizer losses, helping to protect the environment. Recent studies emphasize the effect of nanoparticles of basic and essential elements on plant growth, physiology and development, taking into account their size, composition, concentration and method of application. Key aspects of the research include evaluating the effectiveness of methods of their use and the impact of nanoparticles on the nutritional quality of agricultural crops.
It is noted that foliar fertilization with biogenic metals is important in providing plants with nutrients and enriching them with useful elements. Attention is also focused on the size of nanoparticles, as this factor determines their unique physicochemical properties and ability to penetrate plant cells, which can affect their physiological response and ability to absorb useful or toxic elements.
The review presents the findings regarding the positive and negative aspects of nanoparticles, their impact on agricultural development and environmental sustainability. At the same time, emphasis is placed on the need for further research for the development of nanofertilizers aimed at improving food production and preserving the environment.

Keywords: synthesized nanoparticles, nanomaterials, biogenic metals, agricultural crops, biogenic metals.

List of references

[1]    Achari, G.A., Kowshik, M. (2018). Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora. Journal of agricultural and food chemistry, 66 (33), 8647–8661. DOI: 10.1021/acs.jafc.8b00691. [in English].
[2]    Jagadeesh, P., et al. (2023). Advanced Industrial and Engineering Polymer Research. 12 March 2023. https://doi.org/10.1016/j.aiepr.2023.03.002. [in English].
[3]    Wohlmuth, J., et al. (2022). Usual Effects and Resulting Impact on Usage Perspectives. Plants, 11 (18), 2405. https://doi.org/10.3390/plants11182405. [in English].
[4]    Lopatko, K.G., Olishevskyi, V.V., Vinarchuk, K.V., Lopatko, S.K., Poedynok, N.L., Babko, E.M. (2023). Device for obtaining colloidal solutions of metals. UA Patent 153591, July 6, 2023. Bulletin № 30. National University of Bioresources and Nature Management of Ukraine. [in Ukrainian].
[5]    Boretskij, V.F., Veklich, A.N., Tmenova, T.A., Cressault, Y., Valensi, F., Lopatko, S.K., Aftandilyants, Y.G. (2020). Regulation of Biological Processes with Complexions of Metals Produced by Underwater Spark Discharge. Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications. Springer Proceedings in Physics, 247. https://doi.org/10.1007/978-3-030-52268-1_23. [in English].
[6]    Yan, A., Chen, Z. (2019). Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. International Journal of Molecular Sciences, 20 (5), 1003. https://doi.org/10.3390/ijms20051003. [in English].
[7]    Wu, Y., Yang, L., Gong, H., Dang, F., Zhou, D. M. (2020). Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice. Environmental pollution, 260, 113969. DOI: 10.1016/j.envpol.2020.113969. [in English].
[8]    Alananbeh, K., et al. (2017). Antifungal Effect of Silver Nanoparticles on Selected Fungi Isolated from Raw and Waste Water. Indian Journal of Pharmaceutical Sciences, 79 (4), 559–567. https://doi.org/10.4172/pharmaceutical-sciences.1000263. [in English].
[9]    Fouda, M.M.G., Abdelsalam, N.R., El-Naggar, M.E., Zaitoun, A.F., Salim, B.M.A., Bin-Jumah, M., Allam, A.A., Abo-Marzoka, S.A., Kandil, E.E. (2020). Impact of high throughput green synthesized silver nanoparticles on agronomic traits of onion. International journal of biological macromolecules, 149, 1304–1317. DOI: 10.1016/j.ijbiomac.2020.02.004. [in English].
[10]    Wu, J., Wang, G., Vijver, M.G., Bosker, T., Peijnenburg, W. (2020). Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. Environ Pollut, 261, 114117. DOI: 10.1016/j.envpol.2020.114117. [in English].
[11]    Li, C.C., Dang, F., Li, M., Zhu, M., Zhong, H., Hintelmann, H., Zhou, D.M. (2017). Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology, 11 (5), 699–709. DOI:10.1080/17435390.2017.1344740. [in English].
[12]    Li, W.Q., Qing, T., Li, C.C., Li, F., Ge, F., Fei, J.J., Peijnenburg, W. (2020). Integration of subcellular partitioning and chemical forms to understand silver nanoparticles toxicity to lettuce (Lactuca sativa L.) under different exposure pathways. Chemosphere, 258, 127349. DOI: 10.1016/j.chemSphere.2020.127349. [in English].
[13]    Gorczyca, A. (2015). Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. European Journal of Plant Pathology, 142 (2), 251–261. DOI: 10.1007/s10658-015-0608-9. [in English].
[14]    Nawaz S., et al. (2023). Improvement of Abiotic Stress Tolerance in Plants with the Application of Nanoparticles. Abiotic Stress in Plants. DOI: 10.5772/intechopen.110201. [in English].
[15]    Xiong, T., Zhang, T., Dumat, C., Sobanska, S., Dappe, V., Shahid, M., Xian, Y., Li, X., Li, S. (2019). Airborne foliar transfer of particular metals in Lactuca sativa L.: translocation, phytotoxicity, and bioaccessibility. Environ Sci Pollut Res Int, 26 (20), 20064-20078. DOI:10.1007/s11356-018-3084-x. [in English].
[16]    Ullah, H., Li, X., Peng, L., Cai, Y., Mielke, H.W. (2020). In vivo phytotoxicity, uptake, and translocation of PbS nanoparticles in maize (Zea mays L.) plants. Sci Total Environ, 737, 139558. DOI: 10.1016/j.scitotenv.2020.139558. [in English].
[17]    Begum, P., Ikhtiari, R., Fugetsu, B., Matsuoka, M., Akasaka, T., Watari, F. (2012). Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci, 262, 120–124. DOI: 10.1016/j.apsusc.2012.03.028. [in English].
[18]    Santás-Miguel, V., et al. (2023). Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environmental Pollution, 334, 122222. https://doi.org/10.1016/j.envpol.2023.122222. [in English].
[19]    Faizan, M., et al. (2017). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56 (2), 678–686. DOI: 10.1007/s11099-017-0717-0. [in English].
[20]    Usman, M., et al. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci Total Environ, 721, 137778. DOI: 10.1016/j.scitotenv.2020.137778. [in English].
[21]    Abbasifar, A., Shahrabadi, F., ValizadehKaji, B. (2020). Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition, 43 (8), 1104–1118. DOI:10.1080/01904167.2020.1724305). [in English].
[22]    Xue, Y., et al. (2022). Effects of silver nanoparticle size, concentration and coating on soil quality as indicated by arylsulfatase and sulfite oxidase activities. Pedosphere, 32 (5), 733–743. https://doi.org/10.1016/j.pedsph.2022.06.006. [in English].
[23]    Verma, K., et al. (2022). Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials, 12 (1), 173. https://doi.org/10.3390/nano12010173. [in English].
[24]    Paramo, L., et al. (2020). Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends, Nanomaterials, 10 (9), 1654. DOI: 10.3390/nano10091654. [in English].
[25]    Jankovskis, L., et al. (2022). Impact of Different Nanoparticles on Common Wheat (Triticum aestivum L.) Plants, Course, and Intensity of Photosynthesis, The Scientific World Journal, 2022, 3693869. https://doi.org/10.1155/2022/3693869. [in English].
[26]    Poyedinok, N., et al. (2020). Effect of Colloidal Metal Nanoparticles on Biomass, Polysaccharides, Flavonoids, and Melanin Accumulation in Medicinal Mushroom Inonotus obliquus (Ach.:Pers.) Pilát. Applied Biochemistry and Biotechnology, 191 (3), 1315–1325. https://doi.org/10.1007/s12010-020-03281-2. [in Ukrainian].
[27]    Rathore, I., Tarafdar, J.C. (2015). Perspectives of Biosynthesized Magnesium Nanoparticles in Foliar Application of Wheat Plant. J Bionanosci, 9 (3), 209–214. DOI:10.1166/jbns.2015.1296. [in English].
[28]    Koza, N., et al. (2022). Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms, 10 (8), 1528. DOI: 10.3390/microorganisms10081528. PMCID: PMC9415082. PMID: 36013946. [in English].
[29]    Yılmaz, G., et al. (2023). Antimicrobial Nanomaterials: A Review. Hygiene, 3 (3), 269–290. https://doi.org/10.3390/hygiene3030020. [in English].
[30]    Zakharchenko S., et al. (2020). Features of Obtaining of Plasma-Erosion Nanodispersed Silver Hydrosols and Their Bactericidal and Fungicidal Properties. Metallofizika i Noveishie Tekhnologii, 42 (6), 829–851. https://doi.org/10.15407/mfint.42.06.0829. [in English].
[31]    Srivastav A., et al. (2021). Effect of ZnO Nanoparticles on Growth and Biochemical Responses of Wheat and Maize. Plants, 10 (12), 2556. DOI: 10.3390/plants10122556. [in English].
[32]    Thuesombat, P., et al. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104, 302–309. https://doi.org/10.1016/j.ecoenv.2014.03.022. [in English]
[33]    Tmenova, T., et al. (2017). Optical emission spectroscopy of plasma of underwater electric spark discharges between metal granules. Problems of Atomic Science and Technology, 107 (1), 132–135. [in English].
[34]    Lopatko, S., Chayka, V. (2022). The main ways of degradation of metal nanoparticles. Biological Systems: Theory and Innovation, 13 (3-4), 87–95. DOI: http://dx.doi.org/10.31548/biologiya13(3-4).2022.061. [in Ukrainian].
[35]    Lopatko, K.G. (2015). Justification of the physical and technological bases of the biological functionality of metal nanoparticles. Kyiv: National University of Bioresources and Nature Management of Ukraine. [in Ukrainian].
[36]    Mittal, D., et al. (2020). Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol, 2. https://doi.org/10.3389/fnano.2020.579954. [in English].
[37]    Panyuta, O., et al. (2016). The Effect of Pre-sowing Seed Treatment with Metal Nanoparticles on the Formation of the Defensive Reaction of Wheat Seedlings Infected with the Eyespot Causal Agent. Nanoscale Research Letters, 11 (1), 92. https://doi.org/10.1186/s11671-016-1305-0. [in English].
[38]    Javed, R., et al. (2019). Bioaccumulation of Cr, Ni, Cd and Pb in the Economically Important Freshwater Fish Schizothorax plagiostomus from Three Rivers of Malakand Division, Pakistan: Risk Assessment for Human Health. Bulletin of Environmental Contamination and Toxicology, 102 (1), 77–83. [in English].
[39]    Rastogi, A., et al. (2017). Application of silicon nanoparticles in agriculture. 3 Biotech, (9) 90. https://doi.org/10.1007/s13205-019-1626-7. [in English].
[40]    Li, Y., Zhu, N., Liang, X., Bai, X., Zheng, L., Zhao, J., Li, Y-f., Zhang, Z., Gao, Y. (2020). Silica Nanoparticles Alleviate Mercury Toxicity via Immobilization and Inactivation of Hg(II) In Soybean (Glycine Max). Environ Sci: Nano, 7 (6), 1807–1817. DOI:10.1039/D0EN00091D. [in English].
[41]    Hussain, B., Lin, Q., Hamid, Y., Sanaullah, M., Di, L., Hashmi, M., Khan, M.B., He, Z., Yang, X. (2020). Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci Total Environ, 712, 136497. DOI:10.1016/j.scitotenv.2020.136497. [in English].
[42]    Suriyaprabha, R., et al. (2014). Foliar Application of Silica Nanoparticles on the Phytochemical Responses of Maize (Zea mays L.) and Its Toxicological Behavior. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 44 (8), 1128–1131. DOI: 10.1080/15533174.2013.799197. [in English].
[43]    Suciaty, T., et al. (2018). The effect of nano-silica fertilizer concentration and rice hull ash doses on soybean (Glycine max (L.) Merrill) growth and yield, IOP Conference Series: Earth and Environmental Science, 129, 012009. DOI: 10.1088/1755-1315/129/1/012009. [in English].
[44]    Janmohammadi, M., et al. (2015). Effect of pre-sowing seed treatments with silicon nanoparticles on Germinability of sunflower (helianthus annuus). Botanica lithuanica, 21 (1), 13–21. DOI: 10.1515/botlit-2015-0002. [in English].
[45]    Landa, P. (2021). Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant Physiology and Biochemistry, 161, 12–24. https://doi.org/10.1016/j.plaphy.2021.01.039. [in English].
[46]    Chandrashekar, H., et al. (2023). Nanoparticle-mediated amelioration of drought stress in plants: a systematic review. PubMed Biotech Oct, 13 (10), 336. DOI: 10.1007/s13205-023-03751-4. [in English].
[47]    Stepien, A., Wojtkowiak, K. (2016). Effect of foliar application of Cu, Zn, and Mn on yield and quality indicators of winter wheat grain. Chilean J Agric Res, 76 (2). DOI:10.4067/S0718-58392016000200012. [in English].
[48]    Kobraee S. Effect of foliar fertilization with zinc and manganese sulfate on yield, dry matter accumulation, and zinc and manganese contents in leaf and seed of chickpea (Cicer arietinum). J Appl Biol Biotechnol. 2019;7(3):20-28. DOI:10.7324/JABB.2019.70305. [in English]
[49]    Gillispie, E.C., Taylor, S.E., Qafoku, N.P., Hochella, Jr. M.F. (2019). Impact of iron and manganese nano-metal-oxides on contaminant interaction and fortification potential in agricultural systems – a review. Environmental Chemistry, 16 (6), 377–390. DOI: 10.1071/EN19063. [in English].
[50]    Xu, Z. (2023). Physiological dynamics as indicators of plant response to manganese binary effect. Front Plant Sci, 14, 5427. DOI: 10.3389/fpls. 2023.1145427. [in English].
[51]    Yomso, A., Bharali, B. (2021). Effects of Manganese on Some Biochemical Indices of Rice (Oryza sativa L.) Crop in Acid Soil Condition. Indian Journal of Pure & Applied Biosciences, 9 (2), 103–114. DOI: http://dx.doi.org/10.18782/2582-2845.8613. [in English].
[52]    Khan, I., Saeed, K., Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arab J Chem, 12 (7), 908–931. DOI:10.1016/j.arabjc.2017.05.011. [in English].
[53]    Joudeh, N., Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology, 20, 262. DOI:10.1186/s12951-022-01272-3. [in English].
[54]    Makio Naito, Toyokazu Yokoyama, Kiyoshi Nogi (2018). Nanoparticle Technology Handbook (Third Edition). https://doi.org/10.1016/C2017-0-01011-X. [in English].
[55]    Yaremchuk, I.Ya. (2018). Waveguide, plasmon-polariton and plasmon resonance effects in micro- and nanostructures for sensor electronics. Lviv: Lviv Polytechnic National University. [in Ukrainian].
[56]    Mayank Tiwari, Neeraj Bangruwa, Debabrata Mishra (2023). 0D, 1D, and 2D magnetic nanostructures: Classification and their applications in modern biosensors. Talanta Open, 8, 100257. DOI:10.1016/j.talo.2023.100257. [in English].
[57]    Arvind Kumar, Rina Sahu, Sunil Kumar (2023). Energy-Efficient Advanced Ultrafine Grinding of Particles Using Stirred Mills–A Review. Energies, 16 (14), 5277. https://doi.org/10.3390/en16145277. [in English].
[58]    Szczyglewska, P. (2023). Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules, 28 (13), 4932. DOI: 10.3390/molecules28134932. [in English].
[59]    Mafuné, F., Kohno, J-y., Takeda, Y., Kondow, T. (2001). Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B., 105 (22), 5114–5120. DOI:10.1021/jp0037091. [in English].
[60]    López-Martín, R., Santos Burgos, B., Normile, P.S., De Toro, J.A., Binns, C. (2021). Gas Phase Synthesis of Multi-Element Nanoparticles. Nanomaterials, 11 (11), 2803. DOI: 10.3390/nano11112803. [in English].
[61]    Hutin, A., Carvalho, M.S. (2022). Effect of contamination from direct sonication on characterization of nanofluid stability. Powder Technology, 429: 117157. DOI: 10.1016/j.powtec.2022.117157. [in English].
[62]    Coppens, K., Ferraris, E. (2019). Chemical Vapor Deposition (CVD). CIRP Encyclopedia of Production Engineering. Berlin, Heidelberg: Springer; https://doi.org/10.1007/978-3-662-53120-4_16770. [in English].
[63]    Ivanišević, I. (2023). The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis. Sensors, 23 (7): 3692. https://doi.org/10.3390/s23073692. [in English].
[64]    Boyko, V.V., Lopatko, K.G. (2021). Materials of Physical Electronics. Kyiv: NUBIP of Ukraine. [in Ukrainian].

All journal issues

About journal

Topics of the journal:

131 - Applied Mechanics

132 - Materials Science

133 - Industry engineering

141 - Power engineering, electrical engineering and electromechanics

208 - Agricultural engineering

The magazine "Engineering, Energy, Transport AIC" is included in the list of scientific professional editions of Ukraine on technical sciences

(Category "Б", Order of the Ministry of Education and Science of Ukraine dated 02.07.2020 №886)

Old version of site: http://tetapk.vsau.edu.ua, http://techjournal.vsau.org

According to the decision of National Council of Television and Radio Broadcasting of Ukraine from 25.04.2024 No. 1337 the scientific journal «Engineering, Energy, Transport AIC» has the ID of the Media R30-05173.

The journal "Engineering, Energy, Transport AIC" is indexed according to the following databases and catalogs:

                               Index Copernicus logo            Фахові видання України logo 
                  Crossref logoНБУ ім. В.І. Вернадського logo
Key information:
ISSN (print): 2520-6168
DOI: 10.37128/2520-6168

Certificate of state registration of mass media: No. 21906-11806 P dated 03/12/2016.

Founder of the journal: Vinnytsia National Agrarian University

Editor-in-chief: Oleksii Tokarchuk - Ph.D., Associate Professor, VNAU (Vinnytsia)

Deputy Editor-in-Chief: Natalia Veselovska - Doctor of Technical Sciences, Full Prof., VNAU (Vinnytsia)

Executive Secretary: Yuriy Polevoda- Ph.D., Associate Professor, VNAU (Vinnytsia)

Members of the Editorial Board:

Tokarchuk O.A. - Ph.D., Associate Professor, Vinnytsia National Agrarian University

Veselovska N.R. - Doctor of Technical Sciences, Full Professor, Vinnytsia National Agrarian University

Polevoda Yu.A. - Ph.D., Associate Professor, Vinnytsia National Agrarian University

Jordan Todorov Maximov - Doctor of Technical Sciences, Full Professor, Technical University of Gabrovo (Bulgaria)

Bulgakov V.M. - Doctor of Technical Sciences, Full Professor, Acad. NAAS, National University of Life and Environmental Sciences of Ukraine

Hraniak V.F. - Ph.D., Associate Professor, Vinnytsia National Agrarian University

Ivanchuk Y.V. - Doctor of Technical Sciences, Associate Professor, Vinnytsia National Technical University

Iskovich-Lototsky R.D. - Doctor of Technical Sciences, Full Professor, Vinnytsia National Technical University

Kupchuk I.M. - Ph.D., Associate Professor, Vinnytsia National Agrarian University

Sevostianov I.V. - Doctor of Technical Sciences, Full Professor, Vinnytsia National Agrarian University

Spirin A.V. - Ph.D., Associate Professor, Vinnytsia National Agrarian University

Tverdokhlib I.V. - Ph.D., Associate Professor, Vinnytsia National Agrarian University

Tsurkan A.V. - Doctor of Technical Sciences, Associate Professor, Vinnytsia National Agrarian University

Yaropud V.M. - Ph.D., Associate Professor, Vinnytsia National Agrarian University


Type of publication: journal

Kind of publication: scientific

Publication status: domestic

Year of foundation: 1997

Periodicity: 4 times per year

Volume: 18-20 conv. print. sheet (А4)

ISSN: 2520-6168 (print version), (online version)

Language of publication: (mixed languages) Ukrainian, English

The sphere of distribution and category of readers: national, foreign, faculty, scientists, entrepreneurs.

The periodical edition is included to the List of scientific professional publications of Ukraine on technical sciences, approved by order of the Ministry of Education and Science of Ukraine in 05.16.2016, No. 515.

The journal "Engineering, Energy, Transport AIC" is included in the "Catalog of Ukrainian Publications".

Subscription to the journal can be issued in each post office. The subscription index is 99720.

History of journal:

It was founded in 1997 under the title "Bulletin of the Vinnitsa State Agricultural Institute." According to the Decree of the Presidium of the Higher Attestation Commission of Ukraine of September 11, 1997, this publication received the status of a professional in which it is allowed to publish the main results of dissertation researches.

In 2001-2014 the journal published under the title “Collection of scientific works of Vinnytsia National Agrarian University. Series: Technical Sciences "(Certificate of State Registration of Mass Media KV No. 16644-5116 PR of 04/30/2010).

Since 2015 journal has title "Engineering, Energy, Transport AIC" (Certificate of State Registration of Mass Media No. 21906-11806 P dated 03/12/2016).